A major challenge in understanding the cuprate superconductors is to clarify the nature of the fundamental electronic correlations that lead to the pseudogap phenomenon. Here we use ultrashort light pulses to prepare a non-thermal distribution of excitations and capture novel properties that are hidden at equilibrium. Using a broadband (0.5-2 eV) probe, we are able to track the dynamics of the dielectric function and unveil an anomalous decrease in the scattering rate of the charge carriers in a pseudogap-like region of the temperature (T) and hole-doping (p) phase diagram. In this region, delimited by a well-defined T*(neq)(p) line, the photoexcitation process triggers the evolution of antinodal excitations from gapped (localized) to delocalized quasiparticles characterized by a longer lifetime. The novel concept of photo-enhanced antinodal conductivity is naturally explained within the singleband Hubbard model, in which the short-range Coulomb repulsion leads to a k-space differentiation between nodal quasiparticles and antinodal excitations. © 2014 Macmillan Publishers Limited. All rights reserved.

Photo-enhanced antinodal conductivity in the pseudogap state of high-T-c cuprates

Capone, Massimo;Giannetti, Claudio;
2014-01-01

Abstract

A major challenge in understanding the cuprate superconductors is to clarify the nature of the fundamental electronic correlations that lead to the pseudogap phenomenon. Here we use ultrashort light pulses to prepare a non-thermal distribution of excitations and capture novel properties that are hidden at equilibrium. Using a broadband (0.5-2 eV) probe, we are able to track the dynamics of the dielectric function and unveil an anomalous decrease in the scattering rate of the charge carriers in a pseudogap-like region of the temperature (T) and hole-doping (p) phase diagram. In this region, delimited by a well-defined T*(neq)(p) line, the photoexcitation process triggers the evolution of antinodal excitations from gapped (localized) to delocalized quasiparticles characterized by a longer lifetime. The novel concept of photo-enhanced antinodal conductivity is naturally explained within the singleband Hubbard model, in which the short-range Coulomb repulsion leads to a k-space differentiation between nodal quasiparticles and antinodal excitations. © 2014 Macmillan Publishers Limited. All rights reserved.
2014
5
Jul
1
10
4353
10.1038/ncomms5353
https://arxiv.org/abs/1405.5462
Cilento, F.; Dal Conte, S.; Coslovich, G.; Peli, S.; Nembrini, N.; Mor, S.; Banfi, F.; Ferrini, G.; Eisaki, H.; Chan, M. K.; Dorow, C. J.; Veit, M. J.; Greven, M.; Van Der Marel, D.; Comin, R.; Damascelli, A.; Rettig, L.; Bovensiepen, U.; Capone, Massimo; Giannetti, Claudio; Parmigiani, F.
File in questo prodotto:
File Dimensione Formato  
ncomms5353.pdf

accesso aperto

Descrizione: Open Access Journal
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 931.95 kB
Formato Adobe PDF
931.95 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14047
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 35
social impact