Using density-functional calculations (DFT) and a tight-binding model, we investigate the origin of distinct favorable geometries which depend on the type of graphyne used. The change in the H geometry is described in terms of the tuning of the hopping between sp(2)-bonded C atoms and sp-bonded C atoms hybridized with the H atoms. We find that the different preferred geometry for each type of graphyne is associated with the electronic effects due to different symmetries rather than a steric effect minimizing the repulsive interaction between the H atoms. The band gaps are significantly tuned as the hopping varies, except in alpha-graphyne, in agreement with the result of our previous DFT study (Koo J et al 2013 J. Phys. Chem. C 117 11960). Our model can be used to describe the geometry and electronic properties of hydrogenated graphynes.
DFT and TB study of the geometry of hydrogen adsorbed on graphynes
Capone, Massimo;
2014-01-01
Abstract
Using density-functional calculations (DFT) and a tight-binding model, we investigate the origin of distinct favorable geometries which depend on the type of graphyne used. The change in the H geometry is described in terms of the tuning of the hopping between sp(2)-bonded C atoms and sp-bonded C atoms hybridized with the H atoms. We find that the different preferred geometry for each type of graphyne is associated with the electronic effects due to different symmetries rather than a steric effect minimizing the repulsive interaction between the H atoms. The band gaps are significantly tuned as the hopping varies, except in alpha-graphyne, in agreement with the result of our previous DFT study (Koo J et al 2013 J. Phys. Chem. C 117 11960). Our model can be used to describe the geometry and electronic properties of hydrogenated graphynes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.