The BCS-BEC (Bose-Einstein condensation) crossover in a lattice is a powerful paradigm that describes how a superconductor deviates from the Bardeen-Cooper-Schrieffer physics as the attractive interaction increases. Optical lattices loaded with binary mixtures of cold atoms allow one to access this phenomenon experimentally in a clean and controlled way. We show that, however, the possibility to study this phenomenon in actual cold-atoms experiments is limited by the effect of the trapping potential. Real-space dynamical mean-field theory calculations show indeed that interactions and the confining potential conspire to pack the fermions in the center of the trap, which approaches a band insulator when the attraction becomes sizeable. Interestingly, the energy gap is spatially more homogeneous than the superfluid condensate order parameter. We show how this physics reflects in several observables, and we propose an alternative strategy to disentangle the effect of the harmonic potential and measure the intrinsic properties resulting from the interaction strength.

Inhomogeneous BCS-BEC crossover for trapped cold atoms in optical lattices / Amaricci, Adriano; Privitera, A.; Capone, Massimo. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - 89:5(2014), pp. 1-6. [10.1103/PhysRevA.89.053604]

Inhomogeneous BCS-BEC crossover for trapped cold atoms in optical lattices

Amaricci, Adriano;Capone, Massimo
2014-01-01

Abstract

The BCS-BEC (Bose-Einstein condensation) crossover in a lattice is a powerful paradigm that describes how a superconductor deviates from the Bardeen-Cooper-Schrieffer physics as the attractive interaction increases. Optical lattices loaded with binary mixtures of cold atoms allow one to access this phenomenon experimentally in a clean and controlled way. We show that, however, the possibility to study this phenomenon in actual cold-atoms experiments is limited by the effect of the trapping potential. Real-space dynamical mean-field theory calculations show indeed that interactions and the confining potential conspire to pack the fermions in the center of the trap, which approaches a band insulator when the attraction becomes sizeable. Interestingly, the energy gap is spatially more homogeneous than the superfluid condensate order parameter. We show how this physics reflects in several observables, and we propose an alternative strategy to disentangle the effect of the harmonic potential and measure the intrinsic properties resulting from the interaction strength.
2014
89
5
1
6
053604
https://arxiv.org/abs/1310.0211
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.89.053604
Amaricci, Adriano; Privitera, A.; Capone, Massimo
File in questo prodotto:
File Dimensione Formato  
PhysRevA.89.053604.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 658.66 kB
Formato Adobe PDF
658.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact