In this paper we study the regularity of the solutions of viscosity solutions of the following Hamilton-Jacobi equations $$ \partial_t u + H(D_{x} u)=0 \qquad \textrm{in } \Omega\subset \R\times \R^{n}\, .$$ In particular, under the assumption that the Hamiltonian $H\in C^2(\R^n)$ is uniformly convex, we prove that the gradient $D_{x}u$ belongs to the class $SBV_{loc}(\Omega)$.

SBV Regularity for Hamilton-Jacobi Equations in ℝn / Bianchini, S.; DE LELLIS, Camillo; Robyr, R.. - In: ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS. - ISSN 0003-9527. - 200:3(2011), pp. 1003-1021. [10.1007/s00205-010-0381-z]

SBV Regularity for Hamilton-Jacobi Equations in ℝn

Bianchini, S.;DE LELLIS, Camillo;
2011-01-01

Abstract

In this paper we study the regularity of the solutions of viscosity solutions of the following Hamilton-Jacobi equations $$ \partial_t u + H(D_{x} u)=0 \qquad \textrm{in } \Omega\subset \R\times \R^{n}\, .$$ In particular, under the assumption that the Hamiltonian $H\in C^2(\R^n)$ is uniformly convex, we prove that the gradient $D_{x}u$ belongs to the class $SBV_{loc}(\Omega)$.
2011
200
3
1003
1021
https://arxiv.org/abs/1002.4087
Bianchini, S.; DE LELLIS, Camillo; Robyr, R.
File in questo prodotto:
File Dimensione Formato  
SBV_for_Hamilton-27-08-2010.pdf

Open Access dal 02/07/2012

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 386.18 kB
Formato Adobe PDF
386.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact