The effects of the NK3 tachykinin receptor antagonist SR 142801 on synaptic transmission and spike windup induced by trains of stimuli applied to a dorsal root were investigated with intra- and extracellular recording from the neonatal rat spinal cord in vitro. SR 142801 (10 muM) reduced the depolarization (recorded from lumbar ventral roots) induced by senktide (an NK3 agonist) more strongly than the one evoked by substance P methyl ester (SPMeO; an NK1 agonist). Nevertheless, after a long (>2 h) application time, SR 142801 largely depressed the response to SPMeO as well. When NK1 or NK3 receptors were blocked by >50% in the presence of SR 142801, there was also a significant reduction in the cumulative depolarization induced by repeated stimuli to a single dorsal root. This blocking action by SR 142801 was also observed in the presence of the N-methyl-D-aspartate (NMDA) receptor antagonist D-aminophosphonovalerate (APV) and the calcium channel blocker nifedipine. Intracellular data from lumbar motoneurons showed that the spike windup was the first and most sensitive target for the SR 142801 blocking effect. Increasing stimulus strength to dorsal root fibers could partly surmount such a block. SR 142801 per se had no direct action on fast synaptic transmission, membrane potential, or input resistance. These findings indicate that SR 142801 could lead to an early, large reduction in the windup of action potential discharge by motoneurons, suggesting its ability to suppress the reflex component of central sensitization evoked by repeated dorsal root stimuli.
Depression of windup of spinal neurons in the neonatal rat spinal cord in vitro by an NK3 tachykinin receptor antagonist / Barbieri, M; Nistri, Andrea. - In: JOURNAL OF NEUROPHYSIOLOGY. - ISSN 0022-3077. - 85:4(2001), pp. 1502-1511. [10.1152/jn.2001.85.4.1502]
Depression of windup of spinal neurons in the neonatal rat spinal cord in vitro by an NK3 tachykinin receptor antagonist
Nistri, Andrea
2001-01-01
Abstract
The effects of the NK3 tachykinin receptor antagonist SR 142801 on synaptic transmission and spike windup induced by trains of stimuli applied to a dorsal root were investigated with intra- and extracellular recording from the neonatal rat spinal cord in vitro. SR 142801 (10 muM) reduced the depolarization (recorded from lumbar ventral roots) induced by senktide (an NK3 agonist) more strongly than the one evoked by substance P methyl ester (SPMeO; an NK1 agonist). Nevertheless, after a long (>2 h) application time, SR 142801 largely depressed the response to SPMeO as well. When NK1 or NK3 receptors were blocked by >50% in the presence of SR 142801, there was also a significant reduction in the cumulative depolarization induced by repeated stimuli to a single dorsal root. This blocking action by SR 142801 was also observed in the presence of the N-methyl-D-aspartate (NMDA) receptor antagonist D-aminophosphonovalerate (APV) and the calcium channel blocker nifedipine. Intracellular data from lumbar motoneurons showed that the spike windup was the first and most sensitive target for the SR 142801 blocking effect. Increasing stimulus strength to dorsal root fibers could partly surmount such a block. SR 142801 per se had no direct action on fast synaptic transmission, membrane potential, or input resistance. These findings indicate that SR 142801 could lead to an early, large reduction in the windup of action potential discharge by motoneurons, suggesting its ability to suppress the reflex component of central sensitization evoked by repeated dorsal root stimuli.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.