We study phase separation in two dimensions in the scaling limit below criticality. The general form of the magnetization profile as the volume goes to infinity is determined exactly within the field theoretical framework which explicitly takes into account the topological nature of the elementary excitations. The result known for the Ising model from its lattice solution is recovered as a particular case. In the asymptotic infrared limit the interface behaves as a simple curve characterized by a gaussian passage probability density. The leading deviation, due to branching, from this behavior is also derived and its coefficient is determined for the Potts model. As a byproduct, for random percolation we obtain the asymptotic density profile of a spanning cluster conditioned to touch only the left half of the boundary.
Phase separation and interface structure in two dimensions from field theory
Delfino, Gesualdo;
2012-01-01
Abstract
We study phase separation in two dimensions in the scaling limit below criticality. The general form of the magnetization profile as the volume goes to infinity is determined exactly within the field theoretical framework which explicitly takes into account the topological nature of the elementary excitations. The result known for the Ising model from its lattice solution is recovered as a particular case. In the asymptotic infrared limit the interface behaves as a simple curve characterized by a gaussian passage probability density. The leading deviation, due to branching, from this behavior is also derived and its coefficient is determined for the Potts model. As a byproduct, for random percolation we obtain the asymptotic density profile of a spanning cluster conditioned to touch only the left half of the boundary.File | Dimensione | Formato | |
---|---|---|---|
12_DV_phase_separation.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
301.08 kB
Formato
Adobe PDF
|
301.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.