We revisit and extend Fisher's argument for a Ginzburg-Landau description of multicritical Yang-Lee models in terms of a single boson Lagrangian with potential phi 2(i phi)n. We explicitly study the cases of n = 1, 2 by a Truncated Hamiltonian Approach based on the free massive boson perturbed by PT symmetric deformations, providing clear evidence of the spontaneous breaking of PT symmetry. For n = 1, the symmetric and the broken phases are separated by the critical point corresponding to the minimal model M25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M}\left(2,5\right) $$\end{document}, while for n = 2, they are separated by a critical manifold corresponding to the minimal model M25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M}\left(2,5\right) $$\end{document} with M27\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M}\left(2,7\right) $$\end{document} on its boundary. Our numerical analysis strongly supports our Ginzburg-Landau descriptions for multicritical Yang-Lee models.

Ginzburg-Landau description for multicritical Yang-Lee models / Lencses, M.; Miscioscia, A.; Mussardo, G.; Takacs, G.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2024:8(2024), pp. 1-32. [10.1007/JHEP08(2024)224]

Ginzburg-Landau description for multicritical Yang-Lee models

Mussardo G.;Takacs G.
2024-01-01

Abstract

We revisit and extend Fisher's argument for a Ginzburg-Landau description of multicritical Yang-Lee models in terms of a single boson Lagrangian with potential phi 2(i phi)n. We explicitly study the cases of n = 1, 2 by a Truncated Hamiltonian Approach based on the free massive boson perturbed by PT symmetric deformations, providing clear evidence of the spontaneous breaking of PT symmetry. For n = 1, the symmetric and the broken phases are separated by the critical point corresponding to the minimal model M25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M}\left(2,5\right) $$\end{document}, while for n = 2, they are separated by a critical manifold corresponding to the minimal model M25\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M}\left(2,5\right) $$\end{document} with M27\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M}\left(2,7\right) $$\end{document} on its boundary. Our numerical analysis strongly supports our Ginzburg-Landau descriptions for multicritical Yang-Lee models.
2024
2024
8
1
32
224
https://doi.org/10.1007/JHEP08(2024)224
https://arxiv.org/abs/2404.06100
Lencses, M.; Miscioscia, A.; Mussardo, G.; Takacs, G.
File in questo prodotto:
File Dimensione Formato  
JHEP08(2024)224.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 566.31 kB
Formato Adobe PDF
566.31 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/141910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact