In this paper we prove the existence of a pseudo-Kahler structure on the deformation space B0(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0(T<^>2)$$\end{document} of properly convex RP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}{\mathbb {P}}<^>2$$\end{document}-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B0(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0(T<^>2)$$\end{document} with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmuller space. We show that the S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>1$$\end{document}-action on B0(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0(T<^>2)$$\end{document}, given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\text {SL}}\,}}(2,{\mathbb {R}})$$\end{document}-action over B0(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0(T<^>2)$$\end{document}.

Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus / Rungi, Nicholas; Tamburelli, Andrea. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 34:4(2024), pp. 1-42. [10.1007/s12220-023-01491-8]

Pseudo-Kähler Geometry of Properly Convex Projective Structures on the torus

Rungi, Nicholas;Tamburelli, Andrea
2024-01-01

Abstract

In this paper we prove the existence of a pseudo-Kahler structure on the deformation space B0(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0(T<^>2)$$\end{document} of properly convex RP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}{\mathbb {P}}<^>2$$\end{document}-structures over the torus. In particular, the pseudo-Riemannian metric and the symplectic form are compatible with the complex structure inherited from the identification of B0(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0(T<^>2)$$\end{document} with the complement of the zero section of the total space of the bundle of cubic holomorphic differentials over the Teichmuller space. We show that the S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>1$$\end{document}-action on B0(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0(T<^>2)$$\end{document}, given by rotation of the fibers, is Hamiltonian and it preserves both the metric and the symplectic form. Finally, we prove the existence of a moment map for the SL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\text {SL}}\,}}(2,{\mathbb {R}})$$\end{document}-action over B0(T2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}_0(T<^>2)$$\end{document}.
2024
34
4
1
42
116
https://arxiv.org/abs/2112.08979
Rungi, Nicholas; Tamburelli, Andrea
File in questo prodotto:
File Dimensione Formato  
s12220-023-01491-8.pdf

non disponibili

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 540.72 kB
Formato Adobe PDF
540.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/142060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact