We extend results proved by the second author (Amer. J. Math., 2009) for nonnegatively curved Alexandrov spaces to general compact Alexandrov spaces X with curvature bounded below. The gradient flow of a geodesically convex functional on the quadratic Wasserstein space (P(X),W_2) satisfies the evolution variational inequality. Moreover, the gradient flow enjoys uniqueness and contractivity. These results are obtained by proving a first variation formula for the Wasserstein distance. © Canadian Mathematical Society 2011.

First variation formula in Wasserstein spaces over compact Alexandrov spaces

Gigli, Nicola;
2012-01-01

Abstract

We extend results proved by the second author (Amer. J. Math., 2009) for nonnegatively curved Alexandrov spaces to general compact Alexandrov spaces X with curvature bounded below. The gradient flow of a geodesically convex functional on the quadratic Wasserstein space (P(X),W_2) satisfies the evolution variational inequality. Moreover, the gradient flow enjoys uniqueness and contractivity. These results are obtained by proving a first variation formula for the Wasserstein distance. © Canadian Mathematical Society 2011.
2012
55
4
723
735
Gigli, Nicola; Ohta, Shin ichi
File in questo prodotto:
File Dimensione Formato  
firstvariationalex.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 220.81 kB
Formato Adobe PDF
220.81 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact