Controlling and understanding electron correlations in quantum matter is one of the most challenging tasks in materials engineering. In the past years a plethora of new puzzling correlated states have been found by carefully stacking and twisting two-dimensional van der Waals materials of different kind. Unique to these stacked structures is the emergence of correlated phases not foreseeable from the single layers alone. In Ta-dichalcogenide heterostructures made of a good metallic "1H"- and a Mott insulating "1T"-layer, recent reports have evidenced a cross-breed itinerant and localized nature of the electronic excitations, similar to what is typically found in heavy fermion systems. Here, we put forward a new interpretation based on first-principles calculations which indicates a sizeable charge transfer of electrons (0.4-0.6 e) from 1T to 1H layers at an elevated interlayer distance. We accurately quantify the strength of the interlayer hybridization which allows us to unambiguously determine that the system is much closer to a doped Mott insulator than to a heavy fermion scenario. Ta-based heterolayers provide therefore a new ground for quantum-materials engineering in the regime of heavily doped Mott insulators hybridized with metallic states at a van der Waals distance.Recent experiments reported the Kondo effect in 1H/1T dichalcogenide hetero-bilayers. Crippa et al. re-examine this interpretation using ab initio calculations and dynamical mean-field theory demonstrating strong charge transfer sensitive to the interlayer separation, indicative of a doped Mott insulator regime.

Heavy fermions vs doped Mott physics in heterogeneous Ta-dichalcogenide bilayers / Crippa, Lorenzo; Bae, Hyeonhu; Wunderlich, Paul; Mazin, Igor I.; Yan, Binghai; Sangiovanni, Giorgio; Wehling, Tim; Valentí, Roser. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 15:1(2024), pp. 1-8. [10.1038/s41467-024-45392-y]

Heavy fermions vs doped Mott physics in heterogeneous Ta-dichalcogenide bilayers

Crippa, Lorenzo;Sangiovanni, Giorgio;
2024-01-01

Abstract

Controlling and understanding electron correlations in quantum matter is one of the most challenging tasks in materials engineering. In the past years a plethora of new puzzling correlated states have been found by carefully stacking and twisting two-dimensional van der Waals materials of different kind. Unique to these stacked structures is the emergence of correlated phases not foreseeable from the single layers alone. In Ta-dichalcogenide heterostructures made of a good metallic "1H"- and a Mott insulating "1T"-layer, recent reports have evidenced a cross-breed itinerant and localized nature of the electronic excitations, similar to what is typically found in heavy fermion systems. Here, we put forward a new interpretation based on first-principles calculations which indicates a sizeable charge transfer of electrons (0.4-0.6 e) from 1T to 1H layers at an elevated interlayer distance. We accurately quantify the strength of the interlayer hybridization which allows us to unambiguously determine that the system is much closer to a doped Mott insulator than to a heavy fermion scenario. Ta-based heterolayers provide therefore a new ground for quantum-materials engineering in the regime of heavily doped Mott insulators hybridized with metallic states at a van der Waals distance.Recent experiments reported the Kondo effect in 1H/1T dichalcogenide hetero-bilayers. Crippa et al. re-examine this interpretation using ab initio calculations and dynamical mean-field theory demonstrating strong charge transfer sensitive to the interlayer separation, indicative of a doped Mott insulator regime.
2024
15
1
1
8
1357
https://doi.org/10.1038/s41467-024-45392-y
Crippa, Lorenzo; Bae, Hyeonhu; Wunderlich, Paul; Mazin, Igor I.; Yan, Binghai; Sangiovanni, Giorgio; Wehling, Tim; Valentí, Roser
File in questo prodotto:
File Dimensione Formato  
s41467-024-45392-y.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/142187
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 11
social impact