We formulate the generic tau-function of the homogeneous Painleve II equation as a Fredholm determinant of an integrable (Its-Izergin-Korepin-Slavnov) operator. The tau-function depends on the isomonodromic time t and two Stokes parameters. The vanishing locus of the tau-function, called the Malgrange divisor is then determined by the zeros of the Fredholm determinant.
Fredholm determinant representation of the homogeneous Painlevé II τ-function / Desiraju, Harini. - In: NONLINEARITY. - ISSN 0951-7715. - 34:9(2021), pp. 6507-6538. [10.1088/1361-6544/abf84a]
Fredholm determinant representation of the homogeneous Painlevé II τ-function
Desiraju, Harini
2021-01-01
Abstract
We formulate the generic tau-function of the homogeneous Painleve II equation as a Fredholm determinant of an integrable (Its-Izergin-Korepin-Slavnov) operator. The tau-function depends on the isomonodromic time t and two Stokes parameters. The vanishing locus of the tau-function, called the Malgrange divisor is then determined by the zeros of the Fredholm determinant.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Desiraju_2021_Nonlinearity_34_6507.pdf
non disponibili
Licenza:
Non specificato
Dimensione
919.92 kB
Formato
Adobe PDF
|
919.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.