This paper extends the correspondence between discrete Cluster Integrable Systems and BPS spectra of five-dimensional N = 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=1$$\end{document} QFTs on R 4 x S 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>4\times S<^>1$$\end{document} by proving that algebraic solutions of the integrable systems are exact solutions for the system of TBA equations arising from the BPS spectral problem. This statement is exemplified in the case of M-theory compactifications on local del Pezzo Calabi-Yau threefolds, corresponding to q-Painlev & eacute; equations and SU(2) gauge theories with matter. A degeneration scheme is introduced, allowing to obtain closed-form expression for the BPS spectrum also in systems without algebraic solutions. By studying the example of local del Pezzo 3, it is shown that when the region in moduli space associated to an algebraic solution is a "wall of marginal stability", the BPS spectrum contains states of arbitrarily high spin, and corresponds to a 5d uplift of a four-dimensional nonlagrangian theory.
BPS Spectra and Algebraic Solutions of Discrete Integrable Systems / Del Monte, Fabrizio. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 405:6(2024), pp. 1-43. [10.1007/s00220-024-05016-4]
BPS Spectra and Algebraic Solutions of Discrete Integrable Systems
Del Monte, Fabrizio
2024-01-01
Abstract
This paper extends the correspondence between discrete Cluster Integrable Systems and BPS spectra of five-dimensional N = 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {N}}=1$$\end{document} QFTs on R 4 x S 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>4\times S<^>1$$\end{document} by proving that algebraic solutions of the integrable systems are exact solutions for the system of TBA equations arising from the BPS spectral problem. This statement is exemplified in the case of M-theory compactifications on local del Pezzo Calabi-Yau threefolds, corresponding to q-Painlev & eacute; equations and SU(2) gauge theories with matter. A degeneration scheme is introduced, allowing to obtain closed-form expression for the BPS spectrum also in systems without algebraic solutions. By studying the example of local del Pezzo 3, it is shown that when the region in moduli space associated to an algebraic solution is a "wall of marginal stability", the BPS spectrum contains states of arbitrarily high spin, and corresponds to a 5d uplift of a four-dimensional nonlagrangian theory.File | Dimensione | Formato | |
---|---|---|---|
s00220-024-05016-4.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.