In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.

Characterisation of upper gradients on the weighted Euclidean space and applications / Lucic, Danka; Pasqualetto, Enrico; Rajala, Tapio. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 200:6(2021), pp. 2473-2513. [10.1007/s10231-021-01088-4]

Characterisation of upper gradients on the weighted Euclidean space and applications

Lucic, Danka;Pasqualetto, Enrico;
2021-01-01

Abstract

In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.
2021
200
6
2473
2513
10.1007/s10231-021-01088-4
https://arxiv.org/abs/2007.11904
Lucic, Danka; Pasqualetto, Enrico; Rajala, Tapio
File in questo prodotto:
File Dimensione Formato  
s10231-021-01088-4.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 10.89 MB
Formato Adobe PDF
10.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/142354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact