We prove a sharp isoperimetric inequality for measured Finsler manifolds having non-negative Ricci curvature and Euclidean volume growth. We also prove a rigidity result for this inequality, under the additional hypotheses of boundedness of the isoperimetric set and the finite reversibility of the space. As a consequence, we deduce the rigidity of the weighted anisotropic isoperimetric inequality for cones in the Euclidean space, in the irreversible setting.
Isoperimetric inequality for Finsler manifolds with non-negative Ricci curvature / Manini, Davide. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 40:5(2024), pp. 1631-1690. [10.4171/rmi/1488]
Isoperimetric inequality for Finsler manifolds with non-negative Ricci curvature
Manini, Davide
2024-01-01
Abstract
We prove a sharp isoperimetric inequality for measured Finsler manifolds having non-negative Ricci curvature and Euclidean volume growth. We also prove a rigidity result for this inequality, under the additional hypotheses of boundedness of the isoperimetric set and the finite reversibility of the space. As a consequence, we deduce the rigidity of the weighted anisotropic isoperimetric inequality for cones in the Euclidean space, in the irreversible setting.File | Dimensione | Formato | |
---|---|---|---|
10.4171-rmi-1488.pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
785.63 kB
Formato
Adobe PDF
|
785.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.