We prove a sharp isoperimetric inequality for measured Finsler manifolds having non-negative Ricci curvature and Euclidean volume growth. We also prove a rigidity result for this inequality, under the additional hypotheses of boundedness of the isoperimetric set and the finite reversibility of the space. As a consequence, we deduce the rigidity of the weighted anisotropic isoperimetric inequality for cones in the Euclidean space, in the irreversible setting.

Isoperimetric inequality for Finsler manifolds with non-negative Ricci curvature / Manini, Davide. - In: REVISTA MATEMATICA IBEROAMERICANA. - ISSN 0213-2230. - 40:5(2024), pp. 1631-1690. [10.4171/rmi/1488]

Isoperimetric inequality for Finsler manifolds with non-negative Ricci curvature

Manini, Davide
2024-01-01

Abstract

We prove a sharp isoperimetric inequality for measured Finsler manifolds having non-negative Ricci curvature and Euclidean volume growth. We also prove a rigidity result for this inequality, under the additional hypotheses of boundedness of the isoperimetric set and the finite reversibility of the space. As a consequence, we deduce the rigidity of the weighted anisotropic isoperimetric inequality for cones in the Euclidean space, in the irreversible setting.
2024
40
5
1631
1690
10.4171/rmi/1488
https://arxiv.org/abs/2212.05130
Manini, Davide
File in questo prodotto:
File Dimensione Formato  
10.4171-rmi-1488.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 785.63 kB
Formato Adobe PDF
785.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/142491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact