The existence of a thermodynamic limit of the distribution of Liapunov exponents is numerically verified in a large class of symplectic models, ranging from Hamiltonian flows to maps and products of random matrices. In the highly chaotic regime this distribution is approximately model-independent. Near an integrable limit only a few exponents give a relevant contribution to the Kolmogorov-Sinai entropy.

Liapunov exponents in high-dimensional symplectic dynamics / Livi, R.; Politi, A.; Ruffo, S.; Vulpiani, A.. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 46:1-2(1987), pp. 147-160. [10.1007/BF01010337]

Liapunov exponents in high-dimensional symplectic dynamics

Ruffo, S.;
1987-01-01

Abstract

The existence of a thermodynamic limit of the distribution of Liapunov exponents is numerically verified in a large class of symplectic models, ranging from Hamiltonian flows to maps and products of random matrices. In the highly chaotic regime this distribution is approximately model-independent. Near an integrable limit only a few exponents give a relevant contribution to the Kolmogorov-Sinai entropy.
1987
46
1-2
147
160
Livi, R.; Politi, A.; Ruffo, S.; Vulpiani, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 46
social impact