We present a new relation between the short time behavior of the heat flow, the geometry of optimal transport and the Ricci flow. We also show how this relation can be used to define an evolution of metrics on non–smooth metric measure spaces with Ricci curvature bounded from below.

A flow tangent to the Ricci flow via heat kernels and mass transport

Gigli, N.;Mantegazza, C.
2014-01-01

Abstract

We present a new relation between the short time behavior of the heat flow, the geometry of optimal transport and the Ricci flow. We also show how this relation can be used to define an evolution of metrics on non–smooth metric measure spaces with Ricci curvature bounded from below.
2014
250
74
104
https://arxiv.org/abs/1208.5815
Gigli, N.; Mantegazza, C.
File in questo prodotto:
File Dimensione Formato  
Ricci-Heat-Transport.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 422.78 kB
Formato Adobe PDF
422.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14375
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact