We present a new relation between the short time behavior of the heat flow, the geometry of optimal transport and the Ricci flow. We also show how this relation can be used to define an evolution of metrics on non–smooth metric measure spaces with Ricci curvature bounded from below.
A flow tangent to the Ricci flow via heat kernels and mass transport
Gigli, N.;Mantegazza, C.
2014-01-01
Abstract
We present a new relation between the short time behavior of the heat flow, the geometry of optimal transport and the Ricci flow. We also show how this relation can be used to define an evolution of metrics on non–smooth metric measure spaces with Ricci curvature bounded from below.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ricci-Heat-Transport.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
422.78 kB
Formato
Adobe PDF
|
422.78 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.