Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($0\nu\beta\beta$), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We determine the production rates of unstable xenon isotopes and tritium due to muon-included neutron fluxes and muon-induced spallation. These are expected to represent the dominant contributions to cosmogenic backgrounds and thus the most relevant for site selection.
Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites / Adrover, M.; Althueser, L.; Andrieu, B.; Angelino, E.; Angevaare, J. R.; Antunovic, B.; Aprile, E.; Babicz, M.; Bajpai, D.; Barberio, E.; Baudis, L.; Bazyk, M.; Bell, N.; Bellagamba, L.; Biondi, R.; Biondi, Y.; Bismark, A.; Boehm, C.; Breskin, A.; Brookes, E. J.; Brown, A.; Bruno, G.; Budnik, R.; Capelli, C.; Cardoso, J. M. R.; Chauvin, A.; Cimental Chavez, A. P.; Colijn, A. P.; Conrad, J.; Cuenca-García, J. J.; D'Andrea, V.; Decowski, M. P.; Deisting, A.; Di Gangi, P.; Diglio, S.; Doerenkamp, M.; Drexlin, G.; Eitel, K.; Elykov, A.; Engel, R.; Farrell, S.; Ferella, A. D.; Ferrari, C.; Fischer, H.; Flierman, M.; Fulgione, W.; Gaemers, P.; Gaior, R.; Galloway, M.; Garroum, N.; Ghosh, S.; Girard, F.; Glade-Beucke, R.; Glück, F.; Grandi, L.; Grigat, J.; Größle, R.; Guan, H.; Guida, M.; Hammann, R.; Hannen, V.; Hansmann-Menzemer, S.; Hargittai, N.; Hasegawa, T.; Hils, C.; Higuera, A.; Hiraoka, K.; Hoetzsch, L.; Iacovacci, M.; Itow, Y.; Jakob, J.; Jörg, F.; Kara, M.; Kavrigin, P.; Kazama, S.; Keller, M.; Kilminster, B.; Kleifges, M.; Kobayashi, M.; Kopec, A.; von Krosigk, B.; Kuger, F.; Landsman, H.; Lang, R. F.; Li, I.; Li, S.; Liang, S.; Lindemann, S.; Lindner, M.; Lombardi, F.; Loizeau, J.; Luce, T.; Ma, Y.; Macolino, C.; Mahlstedt, J.; Mancuso, A.; Marrodán Undagoitia, T.; Lopes, J. A. M.; Marignetti, F.; Martens, K.; Masbou, J.; Mastroianni, S.; Milutinovic, S.; Miuchi, K.; Miyata, R.; Molinario, A.; Monteiro, C. M. B.; Morå, K.; Morteau, E.; Mosbacher, Y.; Müller, J.; Murra, M.; Newstead, J. L.; Ni, K.; Oberlack, U. G.; Ostrovskiy, I.; Paetsch, B.; Pandurovic, M.; Pellegrini, Q.; Peres, R.; Pienaar, J.; Pierre, M.; Piotter, M.; Plante, G.; Pollmann, T. R.; Principe, L.; Qi, J.; Qin, J.; Rajado Silva, M.; Ramírez García, D.; Razeto, A.; Sakamoto, S.; Sanchez, L.; Sanchez-Lucas, P.; dos Santos, J. M. F.; Sartorelli, G.; Scaffidi, A.; Schulte, P.; Schultz-Coulon, H. -C.; Schulze Eißing, H.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Semeria, F.; Shagin, P.; Sharma, S.; Shen, W.; Silva, M.; Simgen, H.; Singh, R.; Solmaz, M.; Stanley, O.; Steidl, M.; Tan, P. L.; Terliuk, A.; Thers, D.; Thümmler, T.; Tönnies, F.; Toschi, F.; Trinchero, G.; Trotta, R.; Tunnell, C.; Urquijo, P.; Valerius, K.; Vecchi, S.; Vetter, S.; Volta, G.; Vorkapic, D.; Wang, W.; Weerman, K. M.; Weinheimer, C.; Weiss, M.; Wenz, D.; Wittweg, C.; Wolf, J.; Wolf, T.; Wu, V. H. S.; Wurm, M.; Xing, Y.; Yamashita, M.; Ye, J.; Zavattini, G.; Zuber, K.. - In: THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS. - ISSN 1434-6044. - 84:1(2024). [10.1140/epjc/s10052-023-12298-w]
Cosmogenic background simulations for neutrinoless double beta decay with the DARWIN observatory at various underground sites
E. Aprile;V. D'Andrea;S. Mastroianni;A. Scaffidi;W. Shen;R. Trotta;S. Vetter;
2024-01-01
Abstract
Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($0\nu\beta\beta$), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We determine the production rates of unstable xenon isotopes and tritium due to muon-included neutron fluxes and muon-induced spallation. These are expected to represent the dominant contributions to cosmogenic backgrounds and thus the most relevant for site selection.File | Dimensione | Formato | |
---|---|---|---|
s10052-023-12298-w (1).pdf
accesso aperto
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.