Pristine (as prepared) carbon nanotube (CNT) based substrates have been widely used to grow and interface neurons in culture. Nerve cells normally differentiate on CNTs and the synaptic networks, newly formed at the interface with this material, usually show an improved robustness in signal transfer. However manipulation of pristine CNTs is often prevented by their low dispersibility and tendency to aggregate in most solvents. This issue can be at least partially solved by adding solubilizing groups to the surface of CNT, which also helps improving their biocompatibility. It becomes therefore of crucial importance to determine whether chemically manipulated CNTs may maintain their performance in improving nerve signaling. Here we study and compare the impact in vitro on neuronal signaling of two classes of chemically modified multiwalled CNTs in reference to pristine CNTs, which are known to be a substrate able to boost neuronal growth and communication. We found that the extent of functionalization and the nature of the functional groups on MWNT sidewalls affect the conductivity and the biological effects of the final derivatives. This information is important for the future design of biointegrated devices.

Carbon based substrates for interfacing neurons: Comparing pristine with functionalized carbon nanotubes effects on cultured neuronal networks / Bosi, S.; Fabbro, A.; Cantarutti, C.; Mihajlovic, M.; Ballerini, L.; Prato, M.. - In: CARBON. - ISSN 0008-6223. - 97:1 February 2016(2016), pp. 87-91. [10.1016/j.carbon.2015.07.074]

Carbon based substrates for interfacing neurons: Comparing pristine with functionalized carbon nanotubes effects on cultured neuronal networks

Fabbro, A.;Ballerini, L.;
2016-01-01

Abstract

Pristine (as prepared) carbon nanotube (CNT) based substrates have been widely used to grow and interface neurons in culture. Nerve cells normally differentiate on CNTs and the synaptic networks, newly formed at the interface with this material, usually show an improved robustness in signal transfer. However manipulation of pristine CNTs is often prevented by their low dispersibility and tendency to aggregate in most solvents. This issue can be at least partially solved by adding solubilizing groups to the surface of CNT, which also helps improving their biocompatibility. It becomes therefore of crucial importance to determine whether chemically manipulated CNTs may maintain their performance in improving nerve signaling. Here we study and compare the impact in vitro on neuronal signaling of two classes of chemically modified multiwalled CNTs in reference to pristine CNTs, which are known to be a substrate able to boost neuronal growth and communication. We found that the extent of functionalization and the nature of the functional groups on MWNT sidewalls affect the conductivity and the biological effects of the final derivatives. This information is important for the future design of biointegrated devices.
2016
97
1 February 2016
87
91
http://www.sciencedirect.com/science/article/pii/S000862231530097X
Bosi, S.; Fabbro, A.; Cantarutti, C.; Mihajlovic, M.; Ballerini, L.; Prato, M.
File in questo prodotto:
File Dimensione Formato  
Carbon Based Substrates for Interfacing Neurons. Comparing Pristine with Functionalized Carbon...pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 701.65 kB
Formato Adobe PDF
701.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
prato.pdf

Open Access dal 24/07/2017

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 690.9 kB
Formato Adobe PDF
690.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 25
social impact