We perform a principal component analysis (PCA) of two one dimensional lattice models belonging to distinct nonequilibrium universality classes—directed bond percolation and branching and annihilating random walks with an even number of offspring. We find that the uncentered PCA of data sets storing various system’s configurations can be successfully used to determine the critical properties of these nonequilibrium phase transitions. In particular, in both cases, we obtain good estimates of the critical point and the dynamical critical exponent of the models. For directed bond percolation, we are furthermore able to extract critical exponents associated with the correlation length and the order parameter. We discuss the relation of our analysis with low-rank approximations of data sets.

Principal component analysis of absorbing state phase transitions / Muzzi, Cristiano; CORTES SANTAMARIA, RONALD SANTIAGO; Singh Bhakuni, Devendra; Jelic, Asja; Gambassi, Andrea; Dalmonte, Marcello; Verdel, Roberto. - In: PHYSICAL REVIEW. E. - ISSN 2470-0045. - 110:(2024). [10.1103/PhysRevE.110.064121]

Principal component analysis of absorbing state phase transitions

Cristiano Muzzi;Ronald Santiago Cortes;Andrea Gambassi;Marcello Dalmonte;
2024-01-01

Abstract

We perform a principal component analysis (PCA) of two one dimensional lattice models belonging to distinct nonequilibrium universality classes—directed bond percolation and branching and annihilating random walks with an even number of offspring. We find that the uncentered PCA of data sets storing various system’s configurations can be successfully used to determine the critical properties of these nonequilibrium phase transitions. In particular, in both cases, we obtain good estimates of the critical point and the dynamical critical exponent of the models. For directed bond percolation, we are furthermore able to extract critical exponents associated with the correlation length and the order parameter. We discuss the relation of our analysis with low-rank approximations of data sets.
2024
110
064121
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.110.064121
https://arxiv.org/abs/2405.12863
Muzzi, Cristiano; CORTES SANTAMARIA, RONALD SANTIAGO; Singh Bhakuni, Devendra; Jelic, Asja; Gambassi, Andrea; Dalmonte, Marcello; Verdel, Roberto...espandi
File in questo prodotto:
File Dimensione Formato  
PhysRevE.110.064121.pdf

non disponibili

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/144050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact