We prove existence and multiplicity of Cantor families of small-amplitude time-periodic solutions of completely resonant Klein–Gordon equations on the sphere S3 with quadratic, cubic, and quintic nonlinearity, regarded as toy models in general relativity. The solutions are obtained by a variational Lyapunov–Schmidt decomposition, which reduces the problem to the search of mountain pass critical points of a restricted Euler–Lagrange action functional. Compactness properties of its gradient are obtained by Strichartz-type estimates for the solutions of the linear Klein–Gordon equation on S3.

Time-periodic solutions of completely resonant Klein–Gordon equations on S3 / Berti, Massimiliano; Langella, Beatrice; Silimbani, Diego. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - (In corso di stampa). [10.4171/aihpc/125]

Time-periodic solutions of completely resonant Klein–Gordon equations on S3

Berti, Massimiliano;Langella, Beatrice;Silimbani, Diego
In corso di stampa

Abstract

We prove existence and multiplicity of Cantor families of small-amplitude time-periodic solutions of completely resonant Klein–Gordon equations on the sphere S3 with quadratic, cubic, and quintic nonlinearity, regarded as toy models in general relativity. The solutions are obtained by a variational Lyapunov–Schmidt decomposition, which reduces the problem to the search of mountain pass critical points of a restricted Euler–Lagrange action functional. Compactness properties of its gradient are obtained by Strichartz-type estimates for the solutions of the linear Klein–Gordon equation on S3.
In corso di stampa
https://arxiv.org/abs/2308.05678
Berti, Massimiliano; Langella, Beatrice; Silimbani, Diego
File in questo prodotto:
File Dimensione Formato  
2308.05678v1.pdf

non disponibili

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 707.03 kB
Formato Adobe PDF
707.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/144171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact