The dynamical properties of entangled polyelectrolytes are investigated theoretically and computationally for a novel micromanipulation setup. Specifically, we investigate the effects of DC and AC electric fields acting longitudinally on knotted DNA chains, modelled as semiflexible chains of charged beads, under mechanical tension. We consider various experimentally accessible values of the field amplitude and frequency as well as several of the simplest knot types. In particular, we consider both torus and twist knots because they are respectively known to be able or unable to slide along macroscopic threads and ropes. Strikingly, this qualitative distinction disappears in this microscopic context because all the considered knot types acquire a systematic drift in the direction of the electric force. Notably, the knot drift velocity and diffusion coefficient in zero field (both measurable also experimentally) can be used to define a characteristic frictional lengthscale for the various knot types. This previously unexplored length provides valuable information on the extent of self-interactions in the nominal knotted region. It is finally observed that the motion of a knot can respond, albeit with hysteresis, to an AC field only if the driving period is larger than the knot relaxation time (for which the self-diffusion time provides an upper bound). These results suggests that salient aspects of the intrinsic dynamics of knots in DNA chains could be probed experimentally by means of external, time-dependent electric fields.

Driving knots on DNA with AC/DC electric fields: topological friction and memory effects

Di Stefano, Marco;Tubiana, Luca;Micheletti, Cristian
2014-01-01

Abstract

The dynamical properties of entangled polyelectrolytes are investigated theoretically and computationally for a novel micromanipulation setup. Specifically, we investigate the effects of DC and AC electric fields acting longitudinally on knotted DNA chains, modelled as semiflexible chains of charged beads, under mechanical tension. We consider various experimentally accessible values of the field amplitude and frequency as well as several of the simplest knot types. In particular, we consider both torus and twist knots because they are respectively known to be able or unable to slide along macroscopic threads and ropes. Strikingly, this qualitative distinction disappears in this microscopic context because all the considered knot types acquire a systematic drift in the direction of the electric force. Notably, the knot drift velocity and diffusion coefficient in zero field (both measurable also experimentally) can be used to define a characteristic frictional lengthscale for the various knot types. This previously unexplored length provides valuable information on the extent of self-interactions in the nominal knotted region. It is finally observed that the motion of a knot can respond, albeit with hysteresis, to an AC field only if the driving period is larger than the knot relaxation time (for which the self-diffusion time provides an upper bound). These results suggests that salient aspects of the intrinsic dynamics of knots in DNA chains could be probed experimentally by means of external, time-dependent electric fields.
2014
10
34
6491
6498
10.1039/c4sm00160e
Di Stefano, Marco; Tubiana, Luca; Di Ventra, M.; Micheletti, Cristian
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 31
social impact