The line intensity mapping technique involves measuring the cumulative emission from specific spectral lines emitted by galaxies and intergalactic gas. This method provides a way to study the matter distribution and the evolution of large-scale structures throughout the history of the Universe. However, modeling intensity mapping from ab-initio approaches can be challenging due to significant astrophysical uncertainties and noticeable degeneracies among astrophysical and cosmological parameters. To address these challenges, we develop a semi-empirical, data-driven framework for galaxy evolution, which features a minimal set of assumptions and parameters gauged on observations. By integrating this with stellar evolution and radiative transfer prescriptions for line emissions, we derive the cosmic [CII] intensity over an extended redshift range 0 ≲ z ≲ 10. Our approach is quite general and can be easily applied to other key lines used in intensity mapping studies, such as [OIII] and the CO ladder. We then evaluate the detectability of the [CII] power spectra using current and forthcoming observational facilities. Our findings offer critical insights into the feasibility and potential contributions of intensity mapping for probing the large-scale structure of the Universe and understanding galaxy evolution.
Semi-empirical approach to [CII] line intensity mapping / Roy, Anirban; Lapi, Andrea. - In: JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. - ISSN 1475-7516. - 2025:01(2025). [10.1088/1475-7516/2025/01/010]
Semi-empirical approach to [CII] line intensity mapping
Lapi, Andrea
2025-01-01
Abstract
The line intensity mapping technique involves measuring the cumulative emission from specific spectral lines emitted by galaxies and intergalactic gas. This method provides a way to study the matter distribution and the evolution of large-scale structures throughout the history of the Universe. However, modeling intensity mapping from ab-initio approaches can be challenging due to significant astrophysical uncertainties and noticeable degeneracies among astrophysical and cosmological parameters. To address these challenges, we develop a semi-empirical, data-driven framework for galaxy evolution, which features a minimal set of assumptions and parameters gauged on observations. By integrating this with stellar evolution and radiative transfer prescriptions for line emissions, we derive the cosmic [CII] intensity over an extended redshift range 0 ≲ z ≲ 10. Our approach is quite general and can be easily applied to other key lines used in intensity mapping studies, such as [OIII] and the CO ladder. We then evaluate the detectability of the [CII] power spectra using current and forthcoming observational facilities. Our findings offer critical insights into the feasibility and potential contributions of intensity mapping for probing the large-scale structure of the Universe and understanding galaxy evolution.File | Dimensione | Formato | |
---|---|---|---|
Roy25.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.