We define a new class of solutions to the WDVV associativity equations. This class is selected by the property that one of the commuting PDEs associated with such a WDVV solution is linearly degenerate. We reduce the problem of classification of such linearly degenerate solutions of WDVV to a particular case of the so-called algebraic Riccati equation and, in this way we arrive at a complete classification of irreducible solutions.

Linearly degenerate Hamiltonian PDEs and a new class of solutions to the WDVV associativity equations

Dubrovin, Boris;
2011-01-01

Abstract

We define a new class of solutions to the WDVV associativity equations. This class is selected by the property that one of the commuting PDEs associated with such a WDVV solution is linearly degenerate. We reduce the problem of classification of such linearly degenerate solutions of WDVV to a particular case of the so-called algebraic Riccati equation and, in this way we arrive at a complete classification of irreducible solutions.
2011
45
4
278
290
https://arxiv.org/abs/1401.0719
Dubrovin, Boris; Pavlov, M.; Zykov, S.
File in questo prodotto:
File Dimensione Formato  
fulltext_fan.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 199.39 kB
Formato Adobe PDF
199.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact