In a previous paper, a realization of the moduli space of framed torsion-free sheaves on Hirzebruch surfaces in terms of monads was given. We build upon that result to construct ADHM data for the Hilbert scheme of points of the total space of the line bundles O(−n) on P1, for n≥1, i.e., the resolutions of the singularities of type 1n(1,1). Basically by implementing a version of the special McKay correspondence, this ADHM description is in turn used to realize these Hilbert schemes as irreducible connected components of quiver varieties. We obtain in this way new examples of quiver varieties which are not of the Nakajima type. © 2016 Elsevier B.V.

Hilbert schemes of points of phi(p1) (-n) as quiver varieties / Bartocci, C.; Bruzzo, Ugo; Lanza, V.; Rava, C. L. S.. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 221:8(2017), pp. 2132-2155. [10.1016/j.jpaa.2016.12.012]

Hilbert schemes of points of phi(p1) (-n) as quiver varieties

Bruzzo, Ugo;
2017-01-01

Abstract

In a previous paper, a realization of the moduli space of framed torsion-free sheaves on Hirzebruch surfaces in terms of monads was given. We build upon that result to construct ADHM data for the Hilbert scheme of points of the total space of the line bundles O(−n) on P1, for n≥1, i.e., the resolutions of the singularities of type 1n(1,1). Basically by implementing a version of the special McKay correspondence, this ADHM description is in turn used to realize these Hilbert schemes as irreducible connected components of quiver varieties. We obtain in this way new examples of quiver varieties which are not of the Nakajima type. © 2016 Elsevier B.V.
2017
221
8
2132
2155
https://arxiv.org/abs/1504.02987
http://cdsads.u-strasbg.fr/abs/2015arXiv150402987B
Bartocci, C.; Bruzzo, Ugo; Lanza, V.; Rava, C. L. S.
File in questo prodotto:
File Dimensione Formato  
2016 Bruzzo.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 556.01 kB
Formato Adobe PDF
556.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14544
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact