First-principles molecular dynamics (Car-Parrinello) simulations based on density functional theory have emerged as a powerful too[ for the study of physical, chemical and biological systems. At present, using parallel computers, systems of a few hundreds of atoms can be routinely investigated. By extending this method to a mixed quantum mechanical-molecular mechanical (QM/MM) hybrid scheme, the system size can be enlarged further. Such an approach is especially attractive for the in situ investigation of chemical reactions that occur in a complex and heterogeneous environment. Here, we review some recent applications of hybrid Car-Parrinello simulations of chemical and biological systems as illustrative examples of the current potential and limitations of this promising novel technique.
Hybrid QM/MM Car-Parrinello simulations of catalytic and enzymatic reactions / Colombo, M. C.; Guidoni, L.; Laio, A.; Magistrato, A.; Maurer, P.; Piana, S.; Rohrig, U.; Spiegel, K.; Sulpizi, M.; Vandevondele, J.; Zumstein, M.; Rothlisberger, U.. - In: CHIMIA. - ISSN 0009-4293. - 56:1-2(2002), pp. 13-19. [10.2533/000942902777680865]
Hybrid QM/MM Car-Parrinello simulations of catalytic and enzymatic reactions
Laio, A.;Magistrato, A.;
2002-01-01
Abstract
First-principles molecular dynamics (Car-Parrinello) simulations based on density functional theory have emerged as a powerful too[ for the study of physical, chemical and biological systems. At present, using parallel computers, systems of a few hundreds of atoms can be routinely investigated. By extending this method to a mixed quantum mechanical-molecular mechanical (QM/MM) hybrid scheme, the system size can be enlarged further. Such an approach is especially attractive for the in situ investigation of chemical reactions that occur in a complex and heterogeneous environment. Here, we review some recent applications of hybrid Car-Parrinello simulations of chemical and biological systems as illustrative examples of the current potential and limitations of this promising novel technique.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.