In this paper we prove that the shape optimization problem {λk (Ω) : Ω ⊂ ℝd, Ω open, P(Ω) = 1, |Ω| <+ ∞- has a solution for any k ∈ ℕ and dimension d. Moreover, every solution is a bounded connected open set with boundary which is C 1,α outside a closed set of Hausdorff dimension d-8. Our results are more general and apply to spectral functionals of the form λk1 (Ω)⋯ λkp (Ω)), for increasing functions f satisfying some suitable bi-Lipschitz type condition. © 2013 Springer Science+Business Media New York.
Existence and Regularity of Minimizers for Some Spectral Functionals with Perimeter Constraint
De Philippis, Guido;
2014-01-01
Abstract
In this paper we prove that the shape optimization problem {λk (Ω) : Ω ⊂ ℝd, Ω open, P(Ω) = 1, |Ω| <+ ∞- has a solution for any k ∈ ℕ and dimension d. Moreover, every solution is a bounded connected open set with boundary which is C 1,α outside a closed set of Hausdorff dimension d-8. Our results are more general and apply to spectral functionals of the form λk1 (Ω)⋯ λkp (Ω)), for increasing functions f satisfying some suitable bi-Lipschitz type condition. © 2013 Springer Science+Business Media New York.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2013_Existence and Regularity of Minimizers for Some Spectral Functionals with Perimeter Constraint.pdf
non disponibili
Licenza:
Non specificato
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.