Recent advances in cold-atom platforms have made real-time dynamics accessible, renewing interest in the motion of superfluid vortices in two-dimensional domains. Here we show that the energy and the trajectories of arbitrary vortex configurations may be computed on a complicated (curved or bounded) surface, provided that one knows a conformal map that links the latter to a simpler domain (like the full plane, or a circular boundary). We also prove that Hamilton’s equations based on the vortex energy agree with the complex dynamical equations for the vortex dynamics, demonstrating that the vortex trajectories are constant-energy curves. We use these ideas to study the dynamics of vortices in a two-dimensional incompressible superfluid with an elliptical boundary, and we derive an analytical expression for the complex potential describing the hydrodynamic flow throughout the fluid. For a vortex inside an elliptical boundary, the orbits are nearly self-similar ellipses.
Conformal maps and superfluid vortex dynamics on curved and bounded surfaces: The case of an elliptical boundary / Caldara, Matteo; Richaud, Andrea; Massignan, Pietro; Fetter, Alexander L.. - In: SCIPOST PHYSICS. - ISSN 2542-4653. - 17:2(2024), pp. 1-25. [10.21468/scipostphys.17.2.039]
Conformal maps and superfluid vortex dynamics on curved and bounded surfaces: The case of an elliptical boundary
Caldara, Matteo;
2024-01-01
Abstract
Recent advances in cold-atom platforms have made real-time dynamics accessible, renewing interest in the motion of superfluid vortices in two-dimensional domains. Here we show that the energy and the trajectories of arbitrary vortex configurations may be computed on a complicated (curved or bounded) surface, provided that one knows a conformal map that links the latter to a simpler domain (like the full plane, or a circular boundary). We also prove that Hamilton’s equations based on the vortex energy agree with the complex dynamical equations for the vortex dynamics, demonstrating that the vortex trajectories are constant-energy curves. We use these ideas to study the dynamics of vortices in a two-dimensional incompressible superfluid with an elliptical boundary, and we derive an analytical expression for the complex potential describing the hydrodynamic flow throughout the fluid. For a vortex inside an elliptical boundary, the orbits are nearly self-similar ellipses.File | Dimensione | Formato | |
---|---|---|---|
SciPostPhys_17_2_039.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.