The notion of state for a system is prevalent in the quantitative sciences and refers to the minimal system summary sufficient to describe the time evolution of the system in a self-consistent manner. This is a prerequisite for a principled understanding of the inner workings of a system. Owing to the complexity of intracellular processes, experimental techniques that can retrieve a sufficient summary are beyond our reach. For the case of stochastic biomolecular reaction networks,we showhowto convert the partial state information accessible by experimental techniques into a full system state using mathematical analysis together with a computational model. This is intimately related to the notion of conditional Markov processes and we introduce the posterior master equation and derive novel approximations to the corresponding infinite- dimensional posterior moment dynamics. We exemplify this state reconstruction approach using both in silico data and single-cell data from two gene expression systems in Saccharomyces cerevisiae, where we reconstruct the dynamic promoter and mRNA states from noisy protein abundance measurements.
Reconstructing dynamic molecular states from single-cell time series / Huang, L.; Pauleve, L.; Zechner, C.; Unger, M.; Hansen, A. S.; Koeppl, H.. - In: JOURNAL OF THE ROYAL SOCIETY INTERFACE. - ISSN 1742-5689. - 13:122(2016). [10.1098/rsif.2016.0533]
Reconstructing dynamic molecular states from single-cell time series
Zechner C.;
2016-01-01
Abstract
The notion of state for a system is prevalent in the quantitative sciences and refers to the minimal system summary sufficient to describe the time evolution of the system in a self-consistent manner. This is a prerequisite for a principled understanding of the inner workings of a system. Owing to the complexity of intracellular processes, experimental techniques that can retrieve a sufficient summary are beyond our reach. For the case of stochastic biomolecular reaction networks,we showhowto convert the partial state information accessible by experimental techniques into a full system state using mathematical analysis together with a computational model. This is intimately related to the notion of conditional Markov processes and we introduce the posterior master equation and derive novel approximations to the corresponding infinite- dimensional posterior moment dynamics. We exemplify this state reconstruction approach using both in silico data and single-cell data from two gene expression systems in Saccharomyces cerevisiae, where we reconstruct the dynamic promoter and mRNA states from noisy protein abundance measurements.File | Dimensione | Formato | |
---|---|---|---|
huang-et-al.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.89 MB
Formato
Adobe PDF
|
1.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.