We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painlevé I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.

Algebraic - geometrical formulation of two-dimensional quantum gravity / Bonelli, G.; Marchetti, P. A.; Matone, M.. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 36:2(1996), pp. 189-196. [10.1007/BF00714381]

Algebraic - geometrical formulation of two-dimensional quantum gravity

Bonelli, G.;
1996-01-01

Abstract

We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painlevé I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.
1996
36
2
189
196
https://arxiv.org/abs/hep-th/9502089
Bonelli, G.; Marchetti, P. A.; Matone, M.
File in questo prodotto:
File Dimensione Formato  
alg.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 354.92 kB
Formato Adobe PDF
354.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 7
social impact