We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painlevé I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.
Algebraic - geometrical formulation of two-dimensional quantum gravity / Bonelli, G.; Marchetti, P. A.; Matone, M.. - In: LETTERS IN MATHEMATICAL PHYSICS. - ISSN 0377-9017. - 36:2(1996), pp. 189-196. [10.1007/BF00714381]
Algebraic - geometrical formulation of two-dimensional quantum gravity
Bonelli, G.;
1996-01-01
Abstract
We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painlevé I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.File | Dimensione | Formato | |
---|---|---|---|
alg.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
354.92 kB
Formato
Adobe PDF
|
354.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.