The Jordan decomposition states that a function f: R → R is of bounded variation if and only if it can be written as the dierence of two monotone increasing functions. In this paper we generalize this property to real valued BV functions of many variables, extending naturally the concept of monotone function. Our result is an extension of a result obtained by Alberti, Bianchini and Crippa. A counterexample is given which prevents further extensions.

A decomposition theorem for BV functions / Bianchini, S.; Tonon, D.. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 10:6(2011), pp. 1549-1566. [10.3934/cpaa.2011.10.1549]

A decomposition theorem for BV functions

Bianchini, S.;Tonon, D.
2011-01-01

Abstract

The Jordan decomposition states that a function f: R → R is of bounded variation if and only if it can be written as the dierence of two monotone increasing functions. In this paper we generalize this property to real valued BV functions of many variables, extending naturally the concept of monotone function. Our result is an extension of a result obtained by Alberti, Bianchini and Crippa. A counterexample is given which prevents further extensions.
2011
10
6
1549
1566
Bianchini, S.; Tonon, D.
File in questo prodotto:
File Dimensione Formato  
Bianchini-Tonon.pdf

Open Access dal 01/07/2012

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 160.54 kB
Formato Adobe PDF
160.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact