On H-type sub-Riemannian manifolds we establish sub-Hessian and sub-Laplacian comparison theorems which are uniform for a family of approximating Riemannian metrics converging to the sub-Riemannian one. We also prove a sharp sub-Riemannian Bonnet–Myers theorem that extends to this general setting results previously proved on contact and quaternionic contact manifolds.

Comparison theorems on H-type sub-Riemannian manifolds / Baudoin, F.; Grong, E.; Rizzi, L.; Vega-Molino, S.. - In: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0944-2669. - 64:5(2025). [10.1007/s00526-025-02992-w]

Comparison theorems on H-type sub-Riemannian manifolds

Grong E.;Rizzi L.
;
2025-01-01

Abstract

On H-type sub-Riemannian manifolds we establish sub-Hessian and sub-Laplacian comparison theorems which are uniform for a family of approximating Riemannian metrics converging to the sub-Riemannian one. We also prove a sharp sub-Riemannian Bonnet–Myers theorem that extends to this general setting results previously proved on contact and quaternionic contact manifolds.
2025
64
5
143
10.1007/s00526-025-02992-w
https://arxiv.org/abs/1909.03532
Baudoin, F.; Grong, E.; Rizzi, L.; Vega-Molino, S.
File in questo prodotto:
File Dimensione Formato  
s00526-025-02992-w (1).pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 599.36 kB
Formato Adobe PDF
599.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/146130
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact