In this paper we consider parafermionic Liouville field theory. We study integral representations of three-point correlation functions and develop a method allowing us to compute them exactly. In particular, we evaluate the generalization of Selberg integral obtained by insertion of parafermionic polynomial. Our result is justified by different approach based on dual representation of parafermionic Liouville field theory described by three-exponential model. © 2011 Elsevier B.V.

Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory / Bershtein, Mikhail; Fateev, V. A.; Litvinov, A. V.. - In: NUCLEAR PHYSICS. B. - ISSN 0550-3213. - 847:2(2011), pp. 413-459. [10.1016/j.nuclphysb.2011.01.035]

Parafermionic polynomials, Selberg integrals and three-point correlation function in parafermionic Liouville field theory

Bershtein Mikhail;
2011-01-01

Abstract

In this paper we consider parafermionic Liouville field theory. We study integral representations of three-point correlation functions and develop a method allowing us to compute them exactly. In particular, we evaluate the generalization of Selberg integral obtained by insertion of parafermionic polynomial. Our result is justified by different approach based on dual representation of parafermionic Liouville field theory described by three-exponential model. © 2011 Elsevier B.V.
2011
847
2
413
459
https://arxiv.org/abs/1011.4090
Bershtein, Mikhail; Fateev, V. A.; Litvinov, A. V.
File in questo prodotto:
File Dimensione Formato  
1011.4090v2.pdf

non disponibili

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 577.66 kB
Formato Adobe PDF
577.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0550321311000691-main.pdf

non disponibili

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 482.14 kB
Formato Adobe PDF
482.14 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/147054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact