We study plane partitions satisfying condition an+1,m+1= 0 (this condition is called “pit”) and asymptotic conditions along three coordinate axes. We find the formulas for generating function of such plane partitions. Such plane partitions label the basis vectors in certain representations of quantum toroidal gl1 algebra, therefore our formulas can be interpreted as the characters of these representations. The resulting formulas resemble formulas for characters of tensor representations of Lie superalgebra glm|n. We discuss representation theoretic interpretation of our formulas using q-deformed W-algebra glm|n.

Plane partitions with a “pit”: generating functions and representation theory / Bershtein, M.; Feigin, B.; Merzon, G.. - In: SELECTA MATHEMATICA. - ISSN 1022-1824. - 24:1(2018), pp. 21-62. [10.1007/s00029-018-0389-z]

Plane partitions with a “pit”: generating functions and representation theory

Bershtein M.;
2018-01-01

Abstract

We study plane partitions satisfying condition an+1,m+1= 0 (this condition is called “pit”) and asymptotic conditions along three coordinate axes. We find the formulas for generating function of such plane partitions. Such plane partitions label the basis vectors in certain representations of quantum toroidal gl1 algebra, therefore our formulas can be interpreted as the characters of these representations. The resulting formulas resemble formulas for characters of tensor representations of Lie superalgebra glm|n. We discuss representation theoretic interpretation of our formulas using q-deformed W-algebra glm|n.
2018
24
1
21
62
https://arxiv.org/abs/1512.08779
Bershtein, M.; Feigin, B.; Merzon, G.
File in questo prodotto:
File Dimensione Formato  
1512.08779v4.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 522.09 kB
Formato Adobe PDF
522.09 kB Adobe PDF Visualizza/Apri
s00029-018-0389-z.pdf

non disponibili

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/147055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact