We study plane partitions satisfying condition an+1,m+1= 0 (this condition is called “pit”) and asymptotic conditions along three coordinate axes. We find the formulas for generating function of such plane partitions. Such plane partitions label the basis vectors in certain representations of quantum toroidal gl1 algebra, therefore our formulas can be interpreted as the characters of these representations. The resulting formulas resemble formulas for characters of tensor representations of Lie superalgebra glm|n. We discuss representation theoretic interpretation of our formulas using q-deformed W-algebra glm|n.
Plane partitions with a “pit”: generating functions and representation theory / Bershtein, M.; Feigin, B.; Merzon, G.. - In: SELECTA MATHEMATICA. - ISSN 1022-1824. - 24:1(2018), pp. 21-62. [10.1007/s00029-018-0389-z]
Plane partitions with a “pit”: generating functions and representation theory
Bershtein M.;
2018-01-01
Abstract
We study plane partitions satisfying condition an+1,m+1= 0 (this condition is called “pit”) and asymptotic conditions along three coordinate axes. We find the formulas for generating function of such plane partitions. Such plane partitions label the basis vectors in certain representations of quantum toroidal gl1 algebra, therefore our formulas can be interpreted as the characters of these representations. The resulting formulas resemble formulas for characters of tensor representations of Lie superalgebra glm|n. We discuss representation theoretic interpretation of our formulas using q-deformed W-algebra glm|n.| File | Dimensione | Formato | |
|---|---|---|---|
|
1512.08779v4.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
522.09 kB
Formato
Adobe PDF
|
522.09 kB | Adobe PDF | Visualizza/Apri |
|
s00029-018-0389-z.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


