A recently proposed correspondence between 4-dimensional N = 2 SUSY SU(k) gauge theories on R4/Zm and SU(k) Toda-like theories with Zm parafermionic symmetry is used to construct four-point N = 1 super Liouville conformal block, which corresponds to the particular case k = m = 2. The construction is based on the conjectural relation between moduli spaces of SU(2) instantons on R4/Z2 and algebras like bgl(2)2 × NSR. This conjecture is confirmed by checking the coincidence of number of fixed points on such instanton moduli space with given instanton number N and dimension of subspace degree N in the representation of such algebra.
Instantons and 2d superconformal field theory / Belavin, A.; Belavin, V.; Bershtein, M.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2011:9(2011). [10.1007/JHEP09(2011)117]
Instantons and 2d superconformal field theory
Belavin V.;Bershtein M.
2011-01-01
Abstract
A recently proposed correspondence between 4-dimensional N = 2 SUSY SU(k) gauge theories on R4/Zm and SU(k) Toda-like theories with Zm parafermionic symmetry is used to construct four-point N = 1 super Liouville conformal block, which corresponds to the particular case k = m = 2. The construction is based on the conjectural relation between moduli spaces of SU(2) instantons on R4/Z2 and algebras like bgl(2)2 × NSR. This conjecture is confirmed by checking the coincidence of number of fixed points on such instanton moduli space with given instanton number N and dimension of subspace degree N in the representation of such algebra.| File | Dimensione | Formato | |
|---|---|---|---|
|
1106.4001v3.pdf
non disponibili
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
152.21 kB
Formato
Adobe PDF
|
152.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
JHEP09(2011)117.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
256.82 kB
Formato
Adobe PDF
|
256.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


