In 2012, Gamayun, Iorgov, and Lisovyy conjectured an explicit expression for the Painlevé VI τ function in terms of the Liouville conformal blocks with central charge c = 1. We prove that the proposed expression satisfies Painlevé VI τ function bilinear equations (and therefore prove the conjecture). The proof reduces to the proof of bilinear relations on conformal blocks. These relations were studied using the embedding of a direct sum of two Virasoro algebras into a sum of Majorana fermion and Super Virasoro algebra. In the framework of the AGT correspondence, the bilinear equations on the conformal blocks can be interpreted in terms of instanton counting on the minimal resolution of $${\mathbb{C}^2/\mathbb{Z}_2}$$C2/Z2 (similarly to Nakajima–Yoshioka blow-up equations).

Bilinear Equations on Painlevé τ Functions from CFT / Bershtein, Mikhail; Shchechkin, Anton. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - 339:3(2015), pp. 1021-1061. [10.1007/s00220-015-2427-4]

Bilinear Equations on Painlevé τ Functions from CFT

Bershtein Mikhail;Shchechkin Anton
2015-01-01

Abstract

In 2012, Gamayun, Iorgov, and Lisovyy conjectured an explicit expression for the Painlevé VI τ function in terms of the Liouville conformal blocks with central charge c = 1. We prove that the proposed expression satisfies Painlevé VI τ function bilinear equations (and therefore prove the conjecture). The proof reduces to the proof of bilinear relations on conformal blocks. These relations were studied using the embedding of a direct sum of two Virasoro algebras into a sum of Majorana fermion and Super Virasoro algebra. In the framework of the AGT correspondence, the bilinear equations on the conformal blocks can be interpreted in terms of instanton counting on the minimal resolution of $${\mathbb{C}^2/\mathbb{Z}_2}$$C2/Z2 (similarly to Nakajima–Yoshioka blow-up equations).
2015
339
3
1021
1061
https://arxiv.org/abs/1406.3008
Bershtein, Mikhail; Shchechkin, Anton
File in questo prodotto:
File Dimensione Formato  
1406.3008v5.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 659.91 kB
Formato Adobe PDF
659.91 kB Adobe PDF Visualizza/Apri
s00220-015-2427-4.pdf

non disponibili

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 846.85 kB
Formato Adobe PDF
846.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/147060
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 48
social impact