We consider the M(2, 3) minimal Liouville gravity, whose state space in the gravity sector is realized as irreducible modules of the Virasoro algebra. We present a recursive construction for BRST cohomology classes based on using an explicit form of singular vectors in irreducible modules of the Virasoro algebra. We find a certain algebra acting on the BRST cohomology space and use this algebra to find the operator algebra of physical states. © 2010 MAIK/Nauka.
The ring of physical states in the M(2, 3) minimal Liouville gravity / Alekseev, O. V.; Bershtein, M. A.. - In: THEORETICAL AND MATHEMATICAL PHYSICS. - ISSN 0040-5779. - 164:1(2010), pp. 929-946. [10.1007/s11232-010-0074-7]
The ring of physical states in the M(2, 3) minimal Liouville gravity
Bershtein M. A.
2010-01-01
Abstract
We consider the M(2, 3) minimal Liouville gravity, whose state space in the gravity sector is realized as irreducible modules of the Virasoro algebra. We present a recursive construction for BRST cohomology classes based on using an explicit form of singular vectors in irreducible modules of the Virasoro algebra. We find a certain algebra acting on the BRST cohomology space and use this algebra to find the operator algebra of physical states. © 2010 MAIK/Nauka.| File | Dimensione | Formato | |
|---|---|---|---|
|
0906.1377v2.pdf
non disponibili
Descrizione: preprint
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
246.16 kB
Formato
Adobe PDF
|
246.16 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
s11232-010-0074-7.pdf
non disponibili
Descrizione: pdf editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
576.27 kB
Formato
Adobe PDF
|
576.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


