Usually, Hawking radiation is derived assuming (i) that a future eternal event horizon forms, and (ii) that the subsequent exterior geometry is static. However, one may be interested in either considering quasi-black holes (objects in an ever-lasting state of approach to horizon formation, but never quite forming one), where (i) fails, or, following the evolution of a black hole during evaporation, where (ii) fails. We shall verify that as long as one has an approximately exponential relation between the affine parameters on the null generators of past and future null infinity, then subject to a suitable adiabatic condition being satisfied, a Planck-distributed flux of Hawking-like radiation will occur. This happens both for the case of an evaporating black hole, as well as for the more dramatic case of a collapsing object for which no horizon has yet formed (or even will ever form). In this article we shall cast the previous statement in a more precise and quantitative form, and subsequently provide several explicit calculations to show how the time-dependent Bogoliubov coefficients can be calculated.

Hawking-like radiation from evolving black holes and compact horizonless objects / Carlos, Barcelo; Liberati, Stefano; Sebastiano, Sonego; Matt, Visser. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2011:2(2011), pp. 003.1-003.30. [10.1007/JHEP02(2011)003]

Hawking-like radiation from evolving black holes and compact horizonless objects

Liberati, Stefano;
2011-01-01

Abstract

Usually, Hawking radiation is derived assuming (i) that a future eternal event horizon forms, and (ii) that the subsequent exterior geometry is static. However, one may be interested in either considering quasi-black holes (objects in an ever-lasting state of approach to horizon formation, but never quite forming one), where (i) fails, or, following the evolution of a black hole during evaporation, where (ii) fails. We shall verify that as long as one has an approximately exponential relation between the affine parameters on the null generators of past and future null infinity, then subject to a suitable adiabatic condition being satisfied, a Planck-distributed flux of Hawking-like radiation will occur. This happens both for the case of an evaporating black hole, as well as for the more dramatic case of a collapsing object for which no horizon has yet formed (or even will ever form). In this article we shall cast the previous statement in a more precise and quantitative form, and subsequently provide several explicit calculations to show how the time-dependent Bogoliubov coefficients can be calculated.
2011
2011
2
1
30
003
Carlos, Barcelo; Liberati, Stefano; Sebastiano, Sonego; Matt, Visser
File in questo prodotto:
File Dimensione Formato  
fulltext.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 410.03 kB
Formato Adobe PDF
410.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 56
social impact