We investigate the role of short-ranged electron-electron interactions in a paradigmatic model of three-dimensional topological insulators, using dynamical mean-field theory and focusing on nonmagnetically ordered solutions. The noninteracting band structure is controlled by a mass term M, whose value discriminates between three different insulating phases, a trivial band insulator and two distinct topologically nontrivial phases. We characterize the evolution of the transitions between the different phases as a function of the local Coulomb repulsion U and find a remarkable dependence of the U-M phase diagram on the value of the local Hund's exchange coupling J. However, regardless of the value of J, following the evolution of the topological transition line between a trivial band insulator and a topological insulator, we find a critical value of U separating a continuous transition from a first-order one. When the Hund's coupling is significant, a Mott insulator is stabilized at large U. In proximity of the Mott transition we observe the emergence of an anomalous "Mott-like" strong topological insulator state. © 2016 American Physical Society.
Strong correlation effects on topological quantum phase transitions in three dimensions / Amaricci, Adriano; Budich, J. C.; Capone, Massimo; Trauzettel, B.; Sangiovanni, G.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9969. - 93:23(2016), pp. 1-11. [10.1103/PhysRevB.93.235112]
Strong correlation effects on topological quantum phase transitions in three dimensions
Amaricci, Adriano;Capone, Massimo;
2016-01-01
Abstract
We investigate the role of short-ranged electron-electron interactions in a paradigmatic model of three-dimensional topological insulators, using dynamical mean-field theory and focusing on nonmagnetically ordered solutions. The noninteracting band structure is controlled by a mass term M, whose value discriminates between three different insulating phases, a trivial band insulator and two distinct topologically nontrivial phases. We characterize the evolution of the transitions between the different phases as a function of the local Coulomb repulsion U and find a remarkable dependence of the U-M phase diagram on the value of the local Hund's exchange coupling J. However, regardless of the value of J, following the evolution of the topological transition line between a trivial band insulator and a topological insulator, we find a critical value of U separating a continuous transition from a first-order one. When the Hund's coupling is significant, a Mott insulator is stabilized at large U. In proximity of the Mott transition we observe the emergence of an anomalous "Mott-like" strong topological insulator state. © 2016 American Physical Society.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.93.235112.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.