We show that any non-linear heat equation with scaling critical dimension −1 is locally well-posed when its initial condition is taken as the Gaussian free field in fractional dimension d<4. Our results in particular extend the well-posedness results of [11,14] from d=3 to the entire subcritical regime.

Local well-posedness of subcritical non-linear heat equations with Gaussian initial data / Chevyrev, Ilya; Mirsajjadi, Hora. - In: JOURNAL OF FUNCTIONAL ANALYSIS. - ISSN 0022-1236. - 289:12(2025). [10.1016/j.jfa.2025.111160]

Local well-posedness of subcritical non-linear heat equations with Gaussian initial data

Chevyrev, Ilya;
2025-01-01

Abstract

We show that any non-linear heat equation with scaling critical dimension −1 is locally well-posed when its initial condition is taken as the Gaussian free field in fractional dimension d<4. Our results in particular extend the well-posedness results of [11,14] from d=3 to the entire subcritical regime.
2025
289
12
111160
https://arxiv.org/abs/2410.11638
Chevyrev, Ilya; Mirsajjadi, Hora
File in questo prodotto:
File Dimensione Formato  
DYM_GFF_4D-.pdf

non disponibili

Descrizione: postprint
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 683.68 kB
Formato Adobe PDF
683.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/148710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact