In this paper we develop and analyze a multilevel weighted reduced basis method for solving stochastic optimal control problems constrained by Stokes equations. We prove the analytic regularity of the optimal solution in the probability space under certain assumptions on the random input data. The finite element method and the stochastic collocation method are employed for the numerical approximation of the problem in the deterministic space and the probability space, respectively, resulting in many large-scale optimality systems to solve. In order to reduce the unaffordable computational effort, we propose a reduced basis method using a multilevel greedy algorithm in combination with isotropic and anisotropic sparse-grid techniques. A weighted a posteriori error bound highlights the contribution stemming from each method. Numerical tests on stochastic dimensions ranging from 10 to 100 demonstrate that our method is very efficient, especially for solving high-dimensional and large-scale optimization problems. © 2015, Springer-Verlag Berlin Heidelberg.

Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations

Rozza, Gianluigi
2016-01-01

Abstract

In this paper we develop and analyze a multilevel weighted reduced basis method for solving stochastic optimal control problems constrained by Stokes equations. We prove the analytic regularity of the optimal solution in the probability space under certain assumptions on the random input data. The finite element method and the stochastic collocation method are employed for the numerical approximation of the problem in the deterministic space and the probability space, respectively, resulting in many large-scale optimality systems to solve. In order to reduce the unaffordable computational effort, we propose a reduced basis method using a multilevel greedy algorithm in combination with isotropic and anisotropic sparse-grid techniques. A weighted a posteriori error bound highlights the contribution stemming from each method. Numerical tests on stochastic dimensions ranging from 10 to 100 demonstrate that our method is very efficient, especially for solving high-dimensional and large-scale optimization problems. © 2015, Springer-Verlag Berlin Heidelberg.
2016
133
1
67
102
Chen, P.; Quarteroni, A.; Rozza, Gianluigi
File in questo prodotto:
File Dimensione Formato  
2016 Rozza.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 792.07 kB
Formato Adobe PDF
792.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 38
social impact