We consider deterministic homogenization for discrete-time fast-slow systems of the form Xk+1 = Xk + n-1an(Xk,Yk) + n-1/2bn(Xk,Yk), Yk+1 = TnYk and give conditions under which the dynamics of the slow equations converge weakly to an Itô diffusion X as n → ∞. The drift and diffusion coefficients of the limiting stochastic differential equation satisfied by X are given explicitly. This extends the results of Kelly-Melbourne (J. Funct. Anal. 272 (2017) 4063-4102) from the continuous-time case to the discrete-time case. Moreover, our methods (p-variation rough paths) work under optimal moment assumptions. Combined with parallel developments on martingale approximations for families of nonuniformly expanding maps in Part 1 by Korepanov, Kosloff and Melbourne, we obtain optimal homogenization results when Tn is such a family of maps.

Deterministic homogenization under optimal moment assumptions for fast–slow systems. Part 2 / Chevyrev, Ilya; Friz, Peter; Korepanov, Alexey; Melbourne, Ian; Zhang, Huilin. - In: ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES. - ISSN 0246-0203. - 58:3(2022), pp. 1328-1350. [10.1214/21-aihp1203]

Deterministic homogenization under optimal moment assumptions for fast–slow systems. Part 2

Chevyrev, Ilya;
2022-01-01

Abstract

We consider deterministic homogenization for discrete-time fast-slow systems of the form Xk+1 = Xk + n-1an(Xk,Yk) + n-1/2bn(Xk,Yk), Yk+1 = TnYk and give conditions under which the dynamics of the slow equations converge weakly to an Itô diffusion X as n → ∞. The drift and diffusion coefficients of the limiting stochastic differential equation satisfied by X are given explicitly. This extends the results of Kelly-Melbourne (J. Funct. Anal. 272 (2017) 4063-4102) from the continuous-time case to the discrete-time case. Moreover, our methods (p-variation rough paths) work under optimal moment assumptions. Combined with parallel developments on martingale approximations for families of nonuniformly expanding maps in Part 1 by Korepanov, Kosloff and Melbourne, we obtain optimal homogenization results when Tn is such a family of maps.
2022
58
3
1328
1350
10.1214/21-aihp1203
https://arxiv.org/abs/1903.10418
Chevyrev, Ilya; Friz, Peter; Korepanov, Alexey; Melbourne, Ian; Zhang, Huilin
File in questo prodotto:
File Dimensione Formato  
CFKMZ_22_AIHP1203.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 340.72 kB
Formato Adobe PDF
340.72 kB Adobe PDF Visualizza/Apri
rpfs_arXiv_v3.pdf

accesso aperto

Descrizione: postprint
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 591.11 kB
Formato Adobe PDF
591.11 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/148790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact