We consider deterministic fast–slow dynamical systems on Rm× Y of the form {xk+1(n)=xk(n)+n-1a(xk(n))+n-1/αb(xk(n))v(yk),yk+1=f(yk),where α∈ (1 , 2). Under certain assumptions we prove convergence of the m-dimensional process Xn(t)=x⌊nt⌋(n) to the solution of the stochastic differential equation dX=a(X)dt+b(X)⋄dLα,where Lα is an α-stable Lévy process and ⋄ indicates that the stochastic integral is in the Marcus sense. In addition, we show that our assumptions are satisfied for intermittent maps f of Pomeau–Manneville type.

Superdiffusive limits for deterministic fast–slow dynamical systems / Chevyrev, Ilya; Friz, Peter K.; Korepanov, Alexey; Melbourne, Ian. - In: PROBABILITY THEORY AND RELATED FIELDS. - ISSN 0178-8051. - 178:3-4(2020), pp. 735-770. [10.1007/s00440-020-00988-5]

Superdiffusive limits for deterministic fast–slow dynamical systems

Chevyrev, Ilya;
2020-01-01

Abstract

We consider deterministic fast–slow dynamical systems on Rm× Y of the form {xk+1(n)=xk(n)+n-1a(xk(n))+n-1/αb(xk(n))v(yk),yk+1=f(yk),where α∈ (1 , 2). Under certain assumptions we prove convergence of the m-dimensional process Xn(t)=x⌊nt⌋(n) to the solution of the stochastic differential equation dX=a(X)dt+b(X)⋄dLα,where Lα is an α-stable Lévy process and ⋄ indicates that the stochastic integral is in the Marcus sense. In addition, we show that our assumptions are satisfied for intermittent maps f of Pomeau–Manneville type.
2020
178
3-4
735
770
10.1007/s00440-020-00988-5
https://arxiv.org/abs/1907.04825
Chevyrev, Ilya; Friz, Peter K.; Korepanov, Alexey; Melbourne, Ian
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-1767888881.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 680.45 kB
Formato Adobe PDF
680.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/148810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact