In this paper, we show that the entropy solution of a scalar conservation law is \begin{itemize} \item continuous outside a $1$-rectifiable set $\Xi$, \item up to a $\mathcal H^1$ negligible set, for each point $(\bar t,\bar x) \in \Xi$ there exists two regions where $u$ is left/right continuous in $(\bar t,\bar x)$. \end{itemize} We provide examples showing that these estimates are nearly optimal. In order to achieve these regularity results, we extend the wave representation of the wavefront approximate solutions to entropy solution. This representation can the interpreted as some sort of Lagrangian representation of the solution to the nonlinear scalar PDE, and implies a fine structure on the level sets of the entropy solution.

Structure of entropy solutions to general scalar conservation laws in one space dimension / Bianchini, Stefano; Yu, Lei. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 428:1(2015), pp. 356-386. [10.1016/j.jmaa.2015.03.006]

Structure of entropy solutions to general scalar conservation laws in one space dimension

Bianchini, Stefano;Yu, Lei
2015-01-01

Abstract

In this paper, we show that the entropy solution of a scalar conservation law is \begin{itemize} \item continuous outside a $1$-rectifiable set $\Xi$, \item up to a $\mathcal H^1$ negligible set, for each point $(\bar t,\bar x) \in \Xi$ there exists two regions where $u$ is left/right continuous in $(\bar t,\bar x)$. \end{itemize} We provide examples showing that these estimates are nearly optimal. In order to achieve these regularity results, we extend the wave representation of the wavefront approximate solutions to entropy solution. This representation can the interpreted as some sort of Lagrangian representation of the solution to the nonlinear scalar PDE, and implies a fine structure on the level sets of the entropy solution.
2015
428
1
356
386
http://www.sciencedirect.com/science/article/pii/S0022247X15002218?via%3Dihub
https://arxiv.org/abs/1409.0521
Bianchini, Stefano; Yu, Lei
File in questo prodotto:
File Dimensione Formato  
main.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 603.21 kB
Formato Adobe PDF
603.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14888
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact