We define a characteristic function for probability measures on the signatures of geometric rough paths. We determine sufficient conditions under which a random variable is uniquely determined by its expected signature, thus partially solving the analogue of the moment problem. We furthermore study analyticity properties of the characteristic function and prove a method of moments for weak convergence of random variables. We apply our results to signature arising from Lévy, Gaussian and Markovian rough paths.

Characteristic functions of measures on geometric rough paths / Chevyrev, Ilya; Lyons, Terry. - In: ANNALS OF PROBABILITY. - ISSN 0091-1798. - 44:6(2016), pp. 4049-4082. [10.1214/15-aop1068]

Characteristic functions of measures on geometric rough paths

Chevyrev, Ilya;
2016-01-01

Abstract

We define a characteristic function for probability measures on the signatures of geometric rough paths. We determine sufficient conditions under which a random variable is uniquely determined by its expected signature, thus partially solving the analogue of the moment problem. We furthermore study analyticity properties of the characteristic function and prove a method of moments for weak convergence of random variables. We apply our results to signature arising from Lévy, Gaussian and Markovian rough paths.
2016
44
6
4049
4082
10.1214/15-aop1068
https://arxiv.org/abs/1307.3580
Chevyrev, Ilya; Lyons, Terry
File in questo prodotto:
File Dimensione Formato  
1307.3580v6.pdf

accesso aperto

Descrizione: postprint
Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 415.45 kB
Formato Adobe PDF
415.45 kB Adobe PDF Visualizza/Apri
ChevyrevLyons16.pdf

accesso aperto

Descrizione: pdf editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 333.94 kB
Formato Adobe PDF
333.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/148891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 43
social impact