In this paper we present the notion of globally integrable quantum system that we introduced in [18]: we motivate it using the spectral theory of pseudodifferential operators and then we give some results on linear and nonlinear perturbations of a globally integrable quantum system. In particular, we give a spectral result ensuring stability of most of its eigenvalues under relatively bounded perturbations and two results controlling the growth of Sobolev norms when it is subject either to a linear unbounded time dependent perturbation or to a small nonlinear Hamiltonian nonlinear perturbation.

Globally Integrable Quantum Systems and Their Perturbations / Bambusi, D.; Langella, B.. - 64:(2025), pp. 1-34. [10.1007/978-981-96-3584-9_1]

Globally Integrable Quantum Systems and Their Perturbations

Langella, B.
2025-01-01

Abstract

In this paper we present the notion of globally integrable quantum system that we introduced in [18]: we motivate it using the spectral theory of pseudodifferential operators and then we give some results on linear and nonlinear perturbations of a globally integrable quantum system. In particular, we give a spectral result ensuring stability of most of its eigenvalues under relatively bounded perturbations and two results controlling the growth of Sobolev norms when it is subject either to a linear unbounded time dependent perturbation or to a small nonlinear Hamiltonian nonlinear perturbation.
2025
64
Springer INdAM Series
1
34
https://arxiv.org/abs/2403.18670
Bambusi, D.; Langella, B.
File in questo prodotto:
File Dimensione Formato  
bari_capitolo.pdf

non disponibili

Descrizione: Versione editoriale ad accesso chiuso
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 555.28 kB
Formato Adobe PDF
555.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/149070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact