We propose and analyze an H2-conforming virtual element method (VEM) for the simplest linear elliptic PDEs in nondivergence form with Cordes coefficients. The VEM hinges on a hierarchical construction valid for any dimension d ≥ 2. The analysis relies on the continuous Miranda-Talenti estimate for convex domains ω and is rather elementary. We prove stability and error estimates in H2(ω), including the effect of quadrature, under minimal regularity of the data. Numerical experiments illustrate the interplay of coefficient regularity and convergence rates in H2(ω).
Conforming virtual element method for nondivergence form linear elliptic equations with Cordes coefficients / Bonnet, Guillaume; Cangiani, Andrea; Nochetto, Ricardo H.. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - 35:01(2025), pp. 75-112. [10.1142/s0218202525500034]
Conforming virtual element method for nondivergence form linear elliptic equations with Cordes coefficients
Bonnet, Guillaume
;Cangiani, Andrea;
2025-01-01
Abstract
We propose and analyze an H2-conforming virtual element method (VEM) for the simplest linear elliptic PDEs in nondivergence form with Cordes coefficients. The VEM hinges on a hierarchical construction valid for any dimension d ≥ 2. The analysis relies on the continuous Miranda-Talenti estimate for convex domains ω and is rather elementary. We prove stability and error estimates in H2(ω), including the effect of quadrature, under minimal regularity of the data. Numerical experiments illustrate the interplay of coefficient regularity and convergence rates in H2(ω).| File | Dimensione | Formato | |
|---|---|---|---|
|
Bonnet_Cangiani_Nochetto-M3AS-2025.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
1.88 MB
Formato
Adobe PDF
|
1.88 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


