We study numerically the small dispersion limit for the Korteweg-de Vries (KdV) equation u(t) + 6uu(x) + epsilon(2)u(xxx) = 0 for epsilon << 1 and give a quantitative comparison of the numerical solution with various asymptotic formulae for small epsilon in the whole (x, t)-plane. The matching of the asymptotic solutions is studied numerically.
A numerical study of the small dispersion limit of the Korteweg–de Vries equation and asymptotic solutions / Grava, Tamara; Klein, C.. - In: PHYSICA D-NONLINEAR PHENOMENA. - ISSN 0167-2789. - 241:23-24(2012), pp. 2246-2264. [10.1016/j.physd.2012.04.001]
A numerical study of the small dispersion limit of the Korteweg–de Vries equation and asymptotic solutions
Grava, Tamara;
2012-01-01
Abstract
We study numerically the small dispersion limit for the Korteweg-de Vries (KdV) equation u(t) + 6uu(x) + epsilon(2)u(xxx) = 0 for epsilon << 1 and give a quantitative comparison of the numerical solution with various asymptotic formulae for small epsilon in the whole (x, t)-plane. The matching of the asymptotic solutions is studied numerically.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Grav_Klein2012.pdf
accesso aperto
Descrizione: articolo di ricerca su rivista
Tipologia:
Documento in Pre-print
Licenza:
Non specificato
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.