Using a simple operator-norm estimate we show that the solution to the second Painlevé equation within the Ablowitz–Segur family is pole-free in a well-defined region of the complex plane of the independent variable. The result is illustrated with several numerical examples.
On the location of poles for the Ablowitz-Segur family of solutions to the second Painleve equation / Bertola, M.. - In: NONLINEARITY. - ISSN 0951-7715. - 25:4(2012), pp. 1179-1185. [10.1088/0951-7715/25/4/1179]
On the location of poles for the Ablowitz-Segur family of solutions to the second Painleve equation
Bertola, M.
2012-01-01
Abstract
Using a simple operator-norm estimate we show that the solution to the second Painlevé equation within the Ablowitz–Segur family is pole-free in a well-defined region of the complex plane of the independent variable. The result is illustrated with several numerical examples.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Bertola-Position of Poles of P2.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
275.37 kB
Formato
Adobe PDF
|
275.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.