This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer function to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the datafrom multiple Jupiter transits, the main beam profiles are measured down to-20 dB at 30 and 44 GHz, and down to-25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approach provides an optical model whose beams fully reproduce the measurements in the main beam region, but also allows a description of the beams at power levels lower than can be achieved by the Jupiter measurements themselves. The agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer bandshapes. The total uncertainties in the effective beam window functions are: 2% and 1.2% at 30 and 44 GHz, respectively (at 600), and 0.7% at 70 GHz (at 1000). © 2014 ESO.

Planck 2013 results. IV. Low Frequency Instrument beams and window functions / Aghanim, N.; Armitage caplan, C.; Arnaud, M.; Ashdown, M.; Atrio barandela, F.; Aumont, J.; Baccigalupi, Carlo; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit lévy, A.; Bernard, J. . P.; Bersanelli, M.; Bielewicz, Pawel; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J. . F.; Catalano, A.; Chamballu, A.; Chiang, L. . Y.; Christensen, P. R.; Church, S.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, Luigi; Davies, R. D.; Davis, R. J.; De Bernardis, P.; De Rosa, A.; De Zotti, Gianfranco; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud héraud, Y.; González nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot versillé, S.; Hernández monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Kangaslahti, P.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. . M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden vørnle, M.; Lindholm, V.; López caniego, M.; Lubin, P. M.; Maciás pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez gonzález, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard nielsen, H. U.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Paci, Francesco; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, Francesca; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J. . L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Ricciardi, S.; Riller, T.; Rocha, G.; Rosset, C.; Roudier, G.; Rubinõ martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J. . L.; Stolyarov, V.; Stompor, R.; Sureau, F.; Sutton, D.; Suur uski, A. . S.; Sygnet, J. . F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Zacchei, A.; Zonca, A.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 571:Nov(2014), pp. A4.1-A4.22. [10.1051/0004-6361/201321544]

Planck 2013 results. IV. Low Frequency Instrument beams and window functions

Baccigalupi, Carlo;Bielewicz, Pawel;Danese, Luigi;De Zotti, Gianfranco;Paci, Francesco;Perrotta, Francesca;
2014-01-01

Abstract

This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer function to go from the observed to the actual sky anisotropy power spectrum. The main beam distortions affect the beam window function, complicating the reconstruction of the anisotropy power spectrum at high multipoles, whereas the sidelobes affect the low and intermediate multipoles. The in-flight assessment of the LFI main beams relies on the measurements performed during Jupiter observations. By stacking the datafrom multiple Jupiter transits, the main beam profiles are measured down to-20 dB at 30 and 44 GHz, and down to-25 dB at 70 GHz. The main beam solid angles are determined to better than 0.2% at each LFI frequency band. The Planck pre-launch optical model is conveniently tuned to characterize the main beams independently of any noise effects. This approach provides an optical model whose beams fully reproduce the measurements in the main beam region, but also allows a description of the beams at power levels lower than can be achieved by the Jupiter measurements themselves. The agreement between the simulated beams and the measured beams is better than 1% at each LFI frequency band. The simulated beams are used for the computation of the window functions for the effective beams. The error budget for the window functions is estimated from both main beam and sidelobe contributions, and accounts for the radiometer bandshapes. The total uncertainties in the effective beam window functions are: 2% and 1.2% at 30 and 44 GHz, respectively (at 600), and 0.7% at 70 GHz (at 1000). © 2014 ESO.
2014
571
Nov
1
22
A4
10.1051/0004-6361/201321544
https://arxiv.org/abs/1303.5065
http://inspirehep.net/record/1224730
Aghanim, N.; Armitage caplan, C.; Arnaud, M.; Ashdown, M.; Atrio barandela, F.; Aumont, J.; Baccigalupi, Carlo; Banday, A. J.; Barreiro, R. B.; Battan...espandi
File in questo prodotto:
File Dimensione Formato  
aa21544_13.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 6.49 MB
Formato Adobe PDF
6.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 50
social impact