We discuss the analytic properties of the Callan-Symanzik beta -function beta (g) associated with the zero-momentum four-point coupling g in the two-dimensional phi (4) model with O(N) symmetry. Using renormalization-group arguments, we derive the asymptotic behaviour of beta (g) at the fixed point g*. We argue that beta'(g) = beta'(g*)+ O(\g - g*\(1/7)) for N = 1 and beta'(g) = beta'(g*) + O(1/log\g - g*\) for N greater than or equal to 3. Our claim is supported by an explicit calculation in the Ising lattice model and by a 1/N calculation for the two-dimensional phi (4) theory. We discuss how these non-analytic corrections may give rise to a slow convergence of the perturbative expansion in powers of g.
Titolo: | Non-analyticity of the Callan-Symanzik beta-function of two-dimensional O(N) models |
Autori: | Calabrese P; Caselle M; Celi A; Pelissetto A; Vicari E |
Rivista: | |
Data di pubblicazione: | 2000 |
Volume: | 33 |
Fascicolo: | 46 |
Pagina iniziale: | 8155 |
Pagina finale: | 8170 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1088/0305-4470/33/46/301 |
Appare nelle tipologie: | 1.1 Journal article |